Uniquely Edge-3-Colorable Graphs and Snarks
نویسندگان
چکیده
A cubic graph G is uniquely edge-3-colorable if G has precisely one 1-factorization. It is proved in this paper, if a uniquely edge-3-colorable, cubic graph G is cyclically 4-edgeconnected, but not cyclically 5-edge-connected, then G must contain a snark as a minor. This is an approach to a conjecture that every triangle free uniquely edge-3-colorable cubic graph must have the Petersen graph as a minor. Fiorini and Wilson (1976) conjectured that every uniquely edge-3-colorable planar cubic graph must have a triangle. It is proved in this paper that every counterexample to this conjecture is cyclically 5-edge-connected and that in a minimal counterexample to the conjecture, every cyclic 5-edge-cut is trivial (an edge-cut T of G is cyclic if no component of GnT is acyclic and a cyclic edge-cut T is trivial if one component of GnT is a circuit of length jT j).
منابع مشابه
On measures of edge-uncolorability of cubic graphs: A brief survey and some new results
There are many hard conjectures in graph theory, like Tutte’s 5-flow conjecture, and the 5-cycle double cover conjecture, which would be true in general if they would be true for cubic graphs. Since most of them are trivially true for 3-edge-colorable cubic graphs, cubic graphs which are not 3-edge-colorable, often called snarks, play a key role in this context. Here, we survey parameters measu...
متن کاملSize of edge-critical uniquely 3-colorable planar graphs
A graph G is uniquely k-colorable if the chromatic number of G is k and G has only one k-coloring up to permutation of the colors. A uniquely k-colorable graph G is edge-critical if G − e is not a uniquely k-colorable graph for any edge e ∈ E(G). Mel’nikov and Steinberg [L. S. Mel’nikov, R. Steinberg, One counterexample for two conjectures on three coloring, Discrete Math. 20 (1977) 203-206] as...
متن کاملThe Size of Edge-critical Uniquely 3-Colorable Planar Graphs
A graph G is uniquely k-colorable if the chromatic number of G is k and G has only one k-coloring up to permutation of the colors. A uniquely k-colorable graph G is edge-critical if G−e is not a uniquely k-colorable graph for any edge e ∈ E(G). In this paper, we prove that if G is an edge-critical uniquely 3-colorable planar graph, then |E(G)| 6 83 |V (G)| − 17 3 . On the other hand, there exis...
متن کاملOn Polyhedral Embeddings of Cubic Graphs
Polyhedral embeddings of cubic graphs by means of certain operations are studied. It is proved that some known families of snarks have no (orientable) polyhedral embeddings. This result supports a conjecture of Grünbaum that no snark admits an orientable polyhedral embedding. This conjecture is verified for all snarks having up to 30 vertices using computer. On the other hand, for every nonorie...
متن کاملTriangle-free Uniquely 3-Edge Colorable Cubic Graphs
This paper presents infinitely many new examples of triangle-free uniquely 3-edge colorable cubic graphs. The only such graph previously known was given by Tutte in 1976.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Graphs and Combinatorics
دوره 16 شماره
صفحات -
تاریخ انتشار 2000